Battery and Bulb Experiment

Use this battery and bulb experiment to teach kids about electrical circuits. For each pair of students, you’ll need a 1.5-volt light bulb, a battery, and a strip of aluminum foil. To promote inquiry, just tell them to light the bulb!

This battery and bulb experiment helps fourth grade students conceptualize electrical circuits. Visit to learn more.

Ms. Sneed Uses a Battery and Bulb Experiment to Promote Inquiry

Our favorite fourth grade teacher, Ms. Sneed, grinned. “You’re going to love this!” she told her student teacher, Mr. Grow. “The first activity in our electricity unit involves batteries and bulbs. It’s super simple. We give each pair of students a light bulb, a battery, and a strip of aluminum foil. Then we ask them to find as many ways as possible to light the bulb.”

“Isn’t that too easy?” asked Mr. Grow.

“Not at all. You’ll see. Help me gather the materials. This fun little activity will scaffold kids to simple circuits, conductors and insulators, and finally, series and parallel circuits.”


Mr. Grow headed to the science cabinet. After locating the bin labeled “electricity,” he began digging out the materials.

“Wait just a minute,” laughed Ms. Sneed. “We need batteries and bulbs with similar voltage.”


“We’ll use these rechargeable AA batteries. If you look closely, you’ll see that they have 1.2 volts. If we don’t have enough of those batteries, we can also use other AA, A, C, or D batteries. Although they’re different sizes, they all have 1.5 volts.”

Mr. Grow looked surprised. “I thought the bigger batteries were stronger.”

“Nope. And we need bulbs with similar voltage. For example, this bulb works in a lamp. It has 120 volts. Obviously, a 1.5-volt battery would not light it.” She pulled out a small package of 1.5-volt light bulbs. “But it will light these.”

Mr. Grow still looked a little confused. “If you try it yourself,” Ms. Sneed said, “you’ll understand the concept so much better. Why don’t you join a lab group tomorrow?”

Kick off your fourth grade electricity unit with this battery and bulb experiment. Visit to learn more.

Are you feeling “pinspired”? Feel free to pin images from this post.

Try, Try Again – Teaching Persistence Through Inquiry

The following day, Mr. Grow sat beside a fourth grade student named Marissa. “This is easy,” she said. “We just connect the bulb to the battery with the aluminum foil.”

Marissa held one end of the foil on the positive end of the battery and the other on the metal tip of the bulb. Unfortunately, nothing happened. “What?” she cried. “Our bulb is broken. Ms. Sneed! Our bulb doesn’t work. Please give us another one.”

Mr. Grow noticed that several groups were calling to Ms. Sneed for new bulbs or batteries. She just smiled and nodded. “Hmm. I’m sure they work. Before the lab, I tested them all. Keep trying.”

When kids experiment with batteries and bulbs, they quickly understand that a connection is not necessarily a circuit. Read more about this fourth grade electricity activity at

Marissa huffed in annoyance. “Why won’t she just tell us? Can you give me a hint, Mr. Grow?”

“Sorry, Marissa, I don’t even know myself. Let’s keep trying.”

Marissa decided to hold one end of the foil on the positive end of the battery and one on the negative end. “Ouch! That burns!” she moaned.

Ms. Sneed evidently heard Marissa’s cry. “If it’s hot, let go!” she told the class.

“Hey, Marissa,” said Mr. Grow. “Heat is energy. That tells us something is happening. Let’s try setting the bulb on top of the foil.” Still nothing happened.

Now Mr. Grow was getting frustrated with the battery and bulb experiment. But Ms. Sneed insisted that they keep trying. Inquiry learning really required persistence!

Then, as Mr. Grow held the bulb on top of the positive end, Marissa connected one end of the foil to the negative end. As she was trying to touch the other end to the tip of the bulb, the foil brushed the side of the bulb — and it lit!

When fourth graders experiment with batteries and bulbs, they learn about circuits. Read more about this electricity activity at
Finding Additional Solutions

Around the room, Mr. Grow could hear shouts. “We did it!” students yelled. As he looked at the pairs, he could see some with lit bulbs (and faces) and others still working.

“Once you find a solution,” Ms. Sneed said, “draw it on your lab sheet. Then try to find more. I’ll tell you that there are at least four configurations that will light the bulb.”

Mr. Grow noticed that Ms. Sneed was now moving to each group to ensure that they found at least one solution. Once they experienced success, she quickly moved away to let them find more configurations on their own.

Start your electricity unit with this simple circuit activity. Fourth grade students will quickly understand what works - and what doesn't. Visit to learn more.

Ms. Sneed’s Class Makes Generalizations About the Battery and Bulb Experiment

“Let’s finish up!” Ms. Sneed called.

A few minutes later, she called everyone to attention. “I’d like to make a classroom display.” She held up a paper light bulb and a paper battery. “Raise your hand if you’d like to share a configuration that worked. Then I’ll call you up here to show it. After you arrange the battery and bulb, we’ll glue it to this construction paper. Finally, you’ll draw a line with with a marker to show how the aluminum foil connected them.”

Mr. Grow watched as Ms. Sneed called kids to the front of the classroom. She asked the other students to confirm whether it would work or not. Soon, six solutions* hung on the wall.

Don't just experiment! Display the results of your battery and bulb experiment. Visit to learn more about this fourth grade electricity activity.

“Now we’ll make a generalization,” said Ms. Sneed. “Who can explain how to light a bulb with a battery and a piece of aluminum foil?”

After a few minutes of wordsmithing, Ms. Sneed typed their statement and hung it with the solutions.

To get your fourth grade students thinking about electrical circuits, let them fiddle around with batteries and bulbs. After inquiry, guide them to make generalizations. This form of teaching and learning engages students and improves critical thinking.

Mr. Grow smiled. Finally, he understood how to make a circuit. More than that, he understood Ms. Sneed’s motivation for using inquiry and generalizations in her science class.

Ms. Sneed Explains Bulbs and Batteries

“We’re not done yet!” exclaimed Ms. Sneed.

She picked up a marker and drew one configuration from the day’s experiment. “This is an electrical circuit. Remember when we learned about atoms? Well, in a circuit, electrons flow from atom to atom. This is called current electricity.

“The battery supplies the force for this current. It has two electrodes, the anode and cathode.” Ms. Sneed pointed to the negative and positive ends of the battery. “When the foil is attached to both, chemical reactions occur inside the battery. One reaction causes the anode to become negatively charged. The other causes the cathode to become positively charged. This forces electrons to flow through the foil from the anode to the cathode.”

Mr. Grow listened with interest. Evidently, Ms. Sneed had reviewed the process and vocabulary prior to the lesson. She was definitely not flying by the seat of her pants.

“However,” Ms. Sneed continued, “our circuit also has a resistor: this bulb.” She pointed to the drawing and picked up her marker. “The electrons flow from the anode through the foil then to the side of the bulb.” Ms. Sneed traced the path. “If you look closely, you’ll see that the filament inside the bulb is attached to the side. It continues through the filament and out through the tip. Then it goes back into the battery.”

Culminate your battery and bulb experiment with an explanation of how electrons move. Draw a simple diagram to show the path in an electrical circuit. Your fourth grade students will truly understand! Visit to learn more.

“The path must be closed,” Ms. Sneed said. “It’s like your circulatory system. Your heart forces your blood to move through your veins and arteries in a continual cycle.”

Mr. Grow sighed. When he watched Ms. Sneed teach, he realized that even the smallest details helped kids understand. Using an analogy drove the concept home. With practice, he hoped he could master teaching too.

Enjoy Teaching

Over the course of her career, Ms. Sneed realized that there were 6 steps to enjoy teaching. In order to survive, she had to organize, plan, and simplify. Then, to thrive, Ms. Sneed needed to learn, engage, and finally – dive in! Follow the Fabulous Teaching Adventures of Ms. Sneed and learn how you can enjoy teaching too.

*Your class may come up with more or less solutions. However, at least four should be displayed.

Previous Post
How to Teach Text Structures – Fourth Grade Informational Text
Next Post
How to Build Simple Circuits for Fourth Grade Electricity Unit